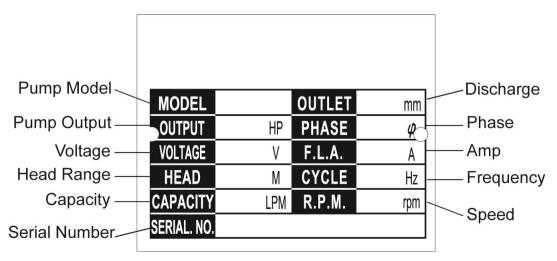
AHS series

Installation and operation manual

INDEX

Introduction	PAGE. 2	OperationPAGE.	. 6
Nameplate format	PAGE. 2	MaintenancePAGE	. 6
Prior to Operation	PAGE. 3	TroubleshootingPAGE	. 7
Installation	PAGE. 4	ConstructionPAGE.	8
Flectrical Wiring	DAGE 5	Disassembly and AssemblyPAGE	. 14

Introduction


Thank you for selecting the AHS submersible dewatering pump.

This instruction manual contains the product operations and gives important precautions regarding its safety use. In order to use the product in best performance, be sure to read the manual thoroughly and follow instructions carefully.

To avoid accident, do not use the pump in any way other than as described in this instruction manual especial on the text! WARNING

If this instruction manual should become lost or damaged, ask your nearest dealer or agent for another copy.

Nameplate format

Prior to Operation

Check the following points upon receipt of your pump:

Is the pump exactly what you ordered? **Check nameplate**. It is especially important that you check whether the pump is to be used with **50 or 60 Hz**.

Has any damage occurred during shipment? Are any bolts or nuts loose? Have all necessary accessories been supplied? (For a list of standard accessories see **Construction page.8**)

We recommend that you keep a spare pump on hand in case of emergencies. Keep this instruction manual in a place for future reference.

Check the nameplate for your pump's head (Hmax), volume (Qmax), speed (R.P.M), motor voltage and current.

Other specifications are noted in the chart as below.

Item		Specifications						
Liquid han- dled	Туре	Sewage, waste water, miscellaneous drain water						
		AHS-05	0.37 kw (1/2 HP)	Single / Three phase				
		AHS-05A	0.37 kw (1/2 HP)	Single phase				
	Power Supply	AHS-10	0.75 kw (1 HP)	Single / Three phase				
Range		AHS-10A	0.75 kw (1 HP)	Single phase				
		AHS-20	1.5 kw (2 HP)	Single / Three phase				
		AHS-20A	1.5 kw (2 HP)	Single phase				
	Pump Casing	FC-200						
Materials	Impeller	Hytrel						
	Shaft	SUS410 stainless steel						
Motor type		Dry type submersible motor						
Shaft seal lu	Shaft seal lubrication oil		Turbine No.32 ISO VG-32					

Installation

1. Check the following before beginning installation.

Insulation resistance measurement:

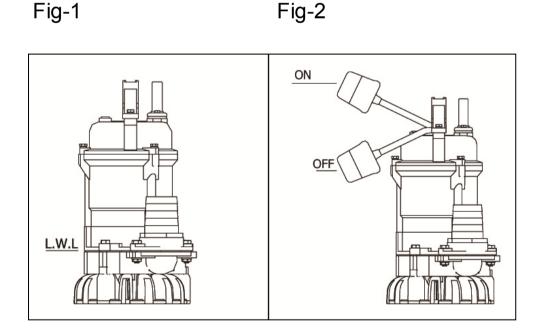
With the motor and cable (excluding the power supply cable) immersed in water, use a Megger to measure the insulation resistance between ground and each phase of the motor, and again between each phase of the motor. The Megger should indicate an insulation resistance of not less than 20mega ohms. While making the measurement, keep the power supply cable off the ground.

We recommend that an auxiliary pump be kept on hand in case of emergency.

2. Installation

<u>Under no circumstances should cable be pulled</u> while the pump is being transported or installed.

Attach a chain or rope to the grip and install the pump.


This pump must not be installed on its side or operated a dry condition. Ensure that it is installed upright on a secure base.

Install the pump at a location in the tank where there is the least turbulence.

If there is a flow of liquid inside the tank, <u>support the piping</u> where appropriate. Install piping so that air will not be entrapped. If piping must be installed in such a way that air pockets are unavoidable, install an air release valve wherever such air pockets are most likely to develop.

Do not permit end of discharge piping to be submerged, as backflow will result when the pump is shut down.

Non-automatic pumps (models AHS) do not have an automatic operating system. Do not operate the pump for a long time with the water level near the minimum operating level (L.W.L.) as shown in Fig.1, as the automatic cut-off switch incorporated inside the motor will be activated. To avoid dry operation, install an automatic operating system (models AHS-A) so that this will not happen, as shown in Fig.2 and maintain a safe operating water level

Electrical Wiring

1.Wiring

- A) Wire as indicated for the appropriate start system as shown in **Fig-3** for single phase version and **Fig-4** for three phase.
- B) Loose connections will stop the pump. Make sure all electrical connections secure.

2.Cable

WARNING: Never let the end of the cable contact water.

3 Phase

- C) If the cable is extended, do not immerse the splice in water.
- D) Fasten the cable to the handle
- E) Install the cable so that it will not overheat. Overheating caused by coiling the cable and exposing it to direct sunlight.

3.grounding

To ground the green wire. Under no circumstances should the green wire be connected to the power supply directly.

4. **WARNING:** Use short circuit breakers to prevent danger of electrical shock.

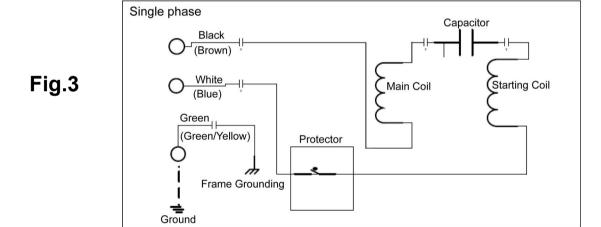


Fig.4

R O Black (Black) U O Overload Protector

V2

T O Red (Brown) W O W2

Green (Green/Yellow) Frame Grounding

Operation

1. Before starting the pump

- 1. After completing installation, measure the insulation resistance again as described in Installation.
- 2. Check water level.

If the pump is operated continuously for an extended period of time in a dry condition or <u>at the lowest water</u> <u>level</u>, the motor protector will be shut off the power. Constant operating in above condition will shorten pump life time. Do not start the pump again in such a situation before the motor has completely cooled.

2. Test operation....

Non-automatic pump (AHS)

Automatic pump (AHS-A)

(1) Turn the operating switch on and off a couple of times to check switch function.

For the AHS-A

Floating switch must be raised for the pump to start.

(2) Next, check direction of rotation. If discharge volume is low or unusual sounds are heard when the pump is operating, rotation direction is reversed. When this happens, reverse two of the wires.

Maintenance

Check pressure, output, voltage, current and other specifications. Unusual readings may indicate. Refer to Troubleshooting and correct as soon as possible.

1. Daily inspections

Check current and ammeter fluctuation daily. If ammeter fluctuation is great, even though within the limits of pump rating, foreign matter may be clogged the pump. If the volume of liquid discharged falls suddenly, foreign matter may be blocked the suction inlet.

2. Regular inspections

Monthly inspections

Measure the insulation resistance. The value should be more than **1M ohm**. If resistance starts to fall rapidly even with an initial indication of over 1M ohm, this may be an indication of trouble and repair work is required. Annual inspections

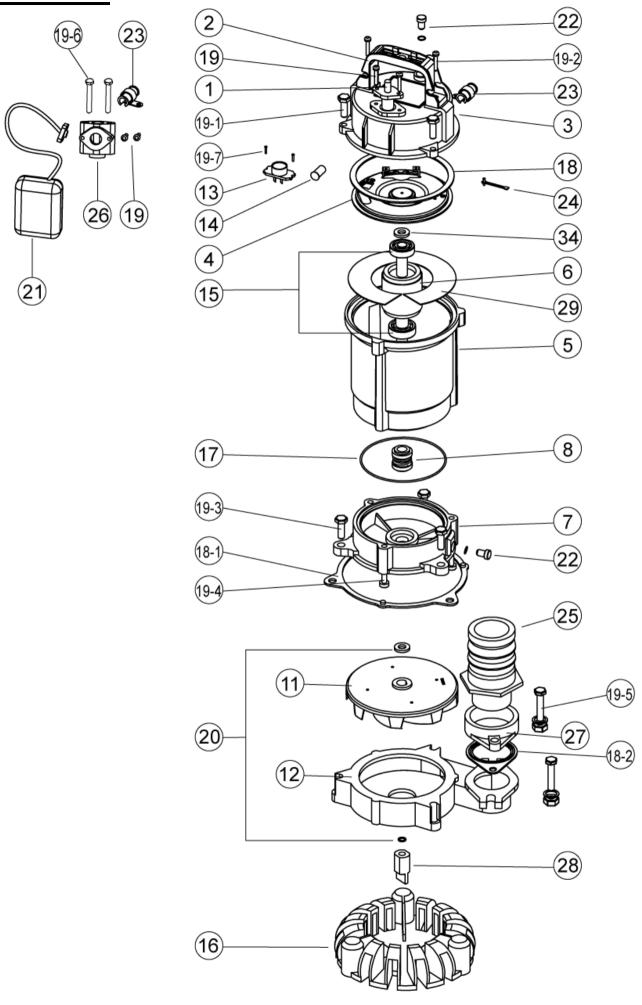
To prolong the service life of the mechanical seal by replacing the oil in the mechanical seal chamber once a year. Water mixed the oil or cloudy textures are indications of a defective mechanical seal requiring replacement. When replacing the oil, lay the pump on its side with filler plug on top. Fill suitable amount turbine oil No.32 (ISO VG-32)

Inspections at 3-5year intervals

Conduct an overhaul of the pump. These intervals will help to avoid possible failure in future.

3. Parts need to be replaced

Replace the appropriate part when the following conditions appear.


Replaceable part	Mechanical seal	Oil filler plug gasket	Lubricating oil	O-ring
Condition	Oil in mechanical seal chamber	Inspect or replace the oil	Oil is clouded or dirty	Overhaul the pump
Frequency	Annual	Half a year	Half a year	Annual

Note: above replacement schedule is based on normal operating conditions.

Troubleshooting

Trouble	Cause	Remedy		
Does not start.	(1) Power failure	(1)~(3) Contact electric power company		
Starts, but im-	(2) Large discrepancy between power source and voltage	and devise counter-measures		
mediately stops.	(3) Significant drop in voltage			
	(4) Motor phase malfunction	(4) Inspect electric circuit		
	(5) Electric circuit connection faulty	(5) Correct wiring		
	(6) Faulty connection of control circuit	(6) Inspect connections and magnetic coil		
	(7) Fuses is blown	(7) Check circuit then replace fuse		
	(8) Faulty magnetic switch (9) Water is not at level indicated by Float	(8) Replace with correct one		
	(10) Float is not in appropriate level	(9) Raise water level (10) Adjust the position of float		
	(11) Float is not effective	(11) Repair or replace		
	(12) Short circuit breaker is functioning	(12) Repair location of short circuit		
	(13) Foreign matter clogging pump	(13) Remove foreign matter		
	(14) Motor burned out	(14) Repair or replace		
	(15) Motor bearing broken	(15) Repair or replace		
Operates, but	(1) Prolonged dry operation has activated motor protec-	(1) Raise water level to C.W.L		
•	tor and caused pump to stop	(1) 1 (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		
stops after a	· · · ·	(0)		
while.	(2) High liquid temperature has activated motor protector and caused pump to stop	(2) Lower liquid temperature		
	(3) Reverse rotation	(3) Correct rotation		
Does not pump.	(1) Reverse rotation	(1) Correct rotation (see Operation)		
Inadequate vol-	(2) Significant drop in voltage	(2) Contact electric power company		
-	(3) Operating a 60Hz pump with 50Hz	(3) Check nameplate		
ume.	(4) Discharge head is high	(4) Recalculate and adjust		
	(5) Large piping loss	(5) Recalculate and adjust		
	(6) Low operating water level causes air suction	(6) Raise water level or lower pump		
	(7) Leaking from discharge piping	(7) Inspect, repair		
	(8) Clogging of discharge piping	(8) Remove foreign matter		
	(9) Foreign matter in suction inlet	(9) Remove foreign matter		
	(10) Foreign matter clogging pump	(10) Remove foreign matter		
	(11) Worn impeller	(11) Replace impeller		
Over current	(1) Unbalanced current and voltage	(1) Contact electric power company		
	(2) Significant voltage drop	(2) Contact electric power company and devise counter-measure		
	(3) Motor phase malfunction	(3) Inspect connections and magnetic switch		
	(4) Operating 50Hz pump on 60Hz	(4) Check nameplate		
	(5) Reverse rotation	(5) Correct rotation (see Operation2)		
	(6) Low head. Excessive volume of water	(6) Replace pump with high head pump		
	(7) Foreign matter clogging pump	(7) Remove foreign matter		
	(8) Motor bearing is worn out or damaged	(8) Replace bearing		
Pump vibrates;	(1) Reverse rotation	(1) Correct rotation		
excessive oper-	(2) Pump clogged with foreign matter	(2) Disassemble and remove foreign matter		
ating noise.	(3) Piping resonates	(3) Improve piping		
	(4) Strainer is closed too far	(4) Open strainer		

Construction

AHS 0.5 HP

NO	Name	Mtrl	F	hoto	NO	Name	Mtrl	Photo
1	Cable	H07/UL		Q	13	Protector (1 Phase)		(Optional)
2	Handle	Nylon 6	•		13	Protector (3 Phase)		
3	Motor Cover	ADC12	1		14	Capacitor		
4	Bracket	SECC		Ö,	15	Bearing		
5	Motor Housing + Stator	ADC12			16	Strainer	PVC	
6	Shaft with Rotor	SUS 410	-		17	O-ring	NBR	
7	Oil Chamber	Cast Iron			21	Float Switch (Optional)		
8	Mech. Seal	Upper : CA/CE Lower : SIC/SIC	0	0=	25	Plastic Hosetail		
11	Impeller	Hytrel			27	Flange	FC-15	0
12	Pump Casing	Cast Iron		0	28	Agitator	SMF5030	
N	O Name	Mtrl		NO		Name		Mtrl
1		NBR		19-6		Screw		SUS 304
18	-1 Gasket	NBR		19-7		Screw		SUS 304
18	-2 Gasket	NBR		20		Washer		SUS 304
19	9 Screw	SUS 304	1	22		Screw with O-ri	ng	
19	-1 Screw	SUS 304	1	23		Cable Seat		

24

26

29

34

Earth Line and Screw

Tadapter (Optional)

Insulating Paper

Corrugated Spring

Steel

SUS 304

SUS 304

Steel

SUS 304

19-2

19-3

19-4

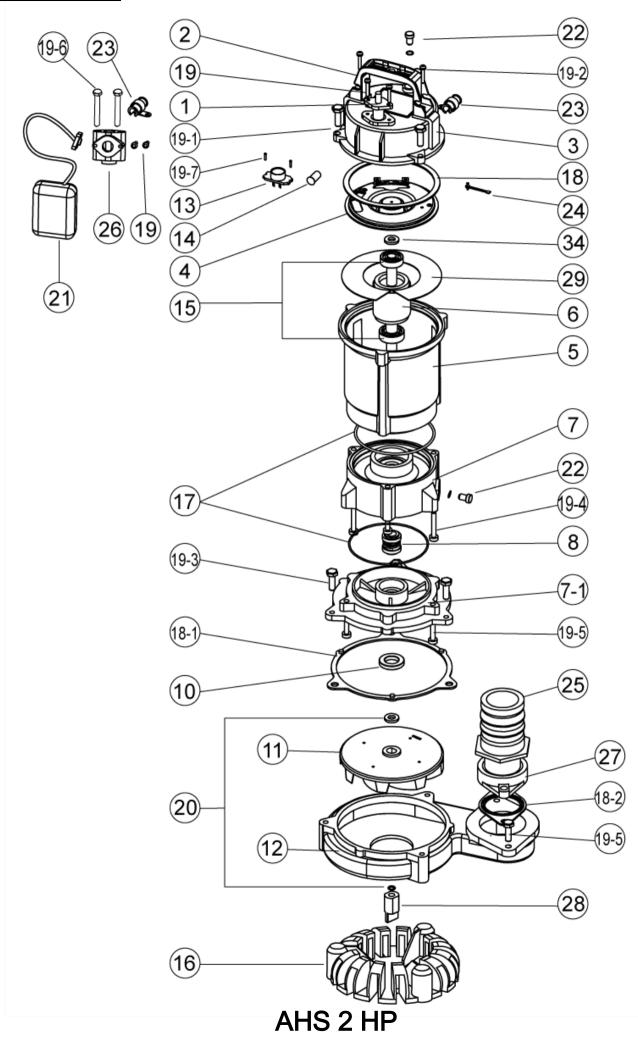
19-5

Screw

Screw

Screw

Screw


Construction 22 2 9 19-6 23 19 (19-2) 1 23 3 19-1 (19-7 18) (13)24 26 (19) (14 34) 4 6 21 15 29 5 8 17 19-3 7 18-1 22 19-4 **25** (11) (19-5) **(27)** 20 12 (18-2) 28

AHS 1 HP

16

NO	Name	Mtrl	Photo	NO	Name	Mtrl	Photo	
1	Cable	H07/UL	Q	13	Protector (1 Phase)		(Optional)	
2	Handle	Nylon 6	C	13	Protector (3 Phase)			
3	Motor Cover	ADC12		14	Capacitor			
4	Bracket	SECC		15	Bearing			
5	Motor Housing + Stator	ADC12		16	Strainer	PVC		
6	Shaft with Rotor	SUS 410		17	O-ring	NBR		
7	Oil Chamber	Cast Iron		21	Float Switch (Optional)			
8	Mech. Seal	Upper : CA/CE Lower : SIC/SIC	00	25	Plastic Hosetail			
11	Impeller	Hytrel	5	27	Flange	FC-15	0	
12	Pump Casing	Cast Iron		28	Agitator	SMF5030		
N	O Name	Mtrl	NO		Name		Mtrl	
1		NBR	19-6		Screw		SUS 304	
18	18-1 Gasket NBR		19-7		Screw		SUS 304	
18	18-2 Gasket NBR		20		Washer		SUS 304	
1	19 Screw SUS 304		22		Screw with O-r	ing		
19	-1 Screw	SUS 304	23		Cable Seat			
19	-2 Screw	SUS 304	24		Earth Line and Screw			
19	-3 Screw	SUS 304	26		Tadapter (Option	onal)		
19	-4 Screw	Steel	29		Insulating Pap	er		
19	-5 Screw	SUS 304			Corrugated Spr	ing	Steel	
	11							

Construction

NO	Name	Mtrl	Photo	NO	Name	Mtrl	Photo
1	Cable	H07/UL		12	Pump Casing	Cast Iron	
2	Handle	Nylon 6	~	13	Protector (1 Phase)		(Optional)
3	Motor Cover	ADC12		13	Protector (3 Phase)		
4	Bracket	SECC		14	Capacitor		
5	Motor Housing + Stator	ADC12		15	Bearing		
6	Shaft with Rotor	SUS 410		16	Strainer	PVC	
7	Oil Chamber A	A356		17	O-ring	NBR	
7-1	Oil Chamber B	A356		21	Float Switch (Optional)		
8	Mech. Seal	Upper : CA/CE Lower : SIC/SIC	00	25	Plastic Hosetail		
10	Oil Seal	NBR		27	Flange	FC-15	0
11	Impeller	Hytrel	5	28	Agitator	SMF5030	
NI	O Name	Natural	NO		Nama		N/I+rl

NO	Name	Mtrl	NO	Name	Mtrl
18	Gasket	NBR	19-6	Screw	SUS 304
18-1	Gasket	NBR	19-7	Screw	SUS 304
18-2	Gasket	NBR	20	Washer	SUS 304
19	Screw	SUS 304	22	Screw with O-ring	
19-1	Screw	SUS 304	23	Cable Seat	
19-2	Screw	SUS 304	24	Earth Line and Screw	
19-3	Screw	SUS 304	26	T adapter (Optional)	
19-4	Screw	Steel	29	Insulating Paper	
19-5	Screw	SUS 304	34	Corrugated Spring	Steel

Disassembly and Assembly

1. Disassembly-

When disassembling pump, have a piece of cardboard or wooden board ready to place the different parts on as you work. Do not pile parts on top of each other. They should be laid out neatly in rows. The "O" ring and gasket cannot be used again once they are removed. Have replacement parts ready. Disassemble in the following order, referring to the sectional view.

Be sure to cut off power source before disassembly.

- (1) Remove pump casing bolts, raise the motor section and remove pump casing.
- (2) Remove shaft head bolt and impeller.
- (3) Remove oil filler plug and drain lubricating oil.
- (4) Remove intermediate casing bolts and oil chamber.

 (Remember that any lubricating oil remaining in the mechanical seal chamber will flow out.)
- (5) Carefully remove mechanical seal, beware of not to scratch sliding surface of motor shaft.

2. Assembly-

Re-assemble in reverse order of disassembly.

Be careful of the following points.

- (1) During re-assembly, rotate the impeller by hand and check for smooth rotation. If rotation is not smooth, perform steps-(3) through -(5) again.
- (2) Upon completion of re-assembly step -(1) rotate the impeller by hand from the suction inlet and check that it rotates smoothly without touching the suction cover before operating the pump.

Please order "O" rings, packing, shaft seals and other parts from your dealer.

